Greedy Unsymmetric Collocation
نویسندگان
چکیده
We present greedy unsymmetric collocation schemes for solving linear elliptic partial differential equations using radial basis functions. The proposed approach circumvents the ill-conditioning problem associated with the standard collocation technique and enables the efficient solution of problems requiring a large set of collocation points. Numerical studies indicate that the accuracy of greedy algorithms incorporating shape parameter tuning can be significantly better than the standard collocation scheme.
منابع مشابه
Stable and Convergent Unsymmetric Meshless Collocation Methods
In the theoretical part of this paper, we introduce a simplified proof technique for error bounds and convergence of a variation of E. Kansa’s well-known unsymmetric meshless collocation method. For a numerical implementation of the convergent variation, a previously proposed greedy technique is coupled with linear optimization. This algorithm allows a fully adaptive on-the-fly data-dependent m...
متن کاملOn convergent numerical algorithms for unsymmetric collocation
In this paper, we are interested in some convergent formulations for the unsymmetric collocation method or the so-called Kansa’s method. We review some newly developed theories on solvability and convergence. The rates of convergence of these variations of Kansa’s method are examined and verified in arbitrary–precision computations. Numerical examples confirm with the theories that the modified...
متن کاملResults on Meshless Collocation Techniques
Though the technique introduced by E. Kansa [7, 8] is very successful in engineering applications, there were no proven results so far on the unsymmetric meshless collocation method for solving PDE boundary value problems in strong form. While the original method cannot be proven to be fail–safe in general, we prove asymptotic feasibility for a generalized variant using separated trial and test...
متن کاملWhy Does MLPG Work?
This is a short summary of recent mathematical results on error bounds and convergence of certain unsymmetric methods, including variations of Kansa’s collocation technique and Atluri’s MLPG method. The presentation is kept as simple as possible in order to address a larger community working on applications in Science and Engineering. Introduction and Summary The Meshless Local Petrov-Galerkin ...
متن کاملConvergence of Unsymmetric Kernel-Based Meshless Collocation Methods
This paper proves convergence of variations of the unsymmetric kernel-based collocation method introduced by E. Kansa in 1986. Since then, this method has been very successfully used in many applications, though it may theoretically fail in special situations, and though it had no error bound or convergence proof up to now. Thus it is necessary to add assumptions or to make modifications. Our m...
متن کامل